A Peridynamic Simulation of Hydraulic Fracture Phenomena in Shale Reservoirs

Siavash Nadimi

Ilija Miskovic

STPLab

Department of Mining Engineering
The University of Utah

Contents

- Introduction
- Hydraulic Fracturing
- Peridynamics Theory
- PDLAMMPS Simulation
- Conclusion

Introduction

- Unconventional reservoirs are essentially any reservoir that requires special recovery operations
 - ✓ Tight-gas sands,
 - ✓ Oil shales,
 - ✓ Heavy oil sandstones,
 - ✓ Gas shales, and
 - ✓ Coal-bed methane

Conventional Gas Reservoir rock Conventional reservoir

Tight Gas
Reservoir rock
Conventional reservoir

Very small, hardly connected pores

Shale Gas Reservoir rock Unconventional reservoir

HUGE amounts of unconventional resources!

Introduction (Cont.)

- The production of unconventional reservoirs has increased:
 - ✓ Directional drilling
 - ✓ Hydraulic fracturing

Percentage of U.S. Oil and Natural Gas from Tight Oil and Shale Gas

Source: U.S. Energy Information Administration, *Annual Energy Outlook 2014*, http://www.eia.gov/oiaf/aeo/tablebrowser/ and other EIA data.

Note: Prior to 2007, the Energy Information Administration did not report tight oil and shale gas data.

Hydraulic Fracturing

- Successful economical production depends on the existence of effective conductivity
- Hydraulic fracturing is a well stimulation treatment
- It involves the coupling of at least three processes:
 - ✓ The mechanical deformation induced by the fluid pressure on the fracture surfaces;
 - ✓ The flow of fluid within the fracture;
 - ✓ The fracture propagation

Numerical simulations

- Continuum-based Numerical Methods
 - **✓ FEM**
 - **✓ XFEM**
- Discrete element method (DEM)
 - **✓** BPM
- Numerically simulation of hydraulic fracturing that model the actual process can be very difficult
 - ✓ Size and time of simulation
 - ✓ A suitable mesh on the evolving crack surface
 - ✓ Large-scale slip and opening of fracture elements are not allowed

Peridynamic (PD) Theory

- PD is a non-local method
- PD establishes the connection between classical continuum mechanics and molecular dynamics

- A particle (infinitesimally small free-body) does obey the Newton's second law.
- The physical interaction between two particles is called "bond"
- In the case of the local theory, points of a material are influenced by the point in the vicinity

- Each point interacts with an infinite number of points in a certain distance named "material horizon", δ
- It is enabled to compute the displacement everywhere whether or not discontinuities present
- If the radius , δ , becomes infinitely large, the PD theory changes to the molecular dynamics
- If the radius , δ , decreases to the size of the particle dimension, the PD theory will switch to the classical continuum mechanics

• The peridynamic equation of motion at a reference configuration of x and time t is given as:

- PD
- ✓ Bond-Based
- ✓ State-Based

Simulation

PDLAMMPS Simulation

- PDLAMMPS coding
 - ✓ Units and Dimension3DSI units
 - ✓ Dimensions (mm):
 Simulation domain: 80 mm*80mm*80mm
 Perforation: D=10mm, L=20mm
 - **✓ Lattice**
 - ✓ Lattice is simply a set of points in space
 - ✓ Region

Geometry

$$(\frac{r}{r_0} = 1, 2, 3, 4)$$

PDLAMMPS Simulation (Cont.)

- Horizon
 - \checkmark δ : 2-5 times of Lattice size
- Lattice
 - \checkmark 1/3 of δ
 - ✓ The lattice style must be consistent with the dimension of the simulation
- Fixing the lowerwall
- Different injection rates
 - √ 2.07, 2.96 and 3.85 bbl/min
- Damage
 - ✓ Damage per atom
 - ✓ Dilatation per atom

- Damage or fracture is incorporated into the model through the bond when their strain exceed some critical value, S_0
- Once a bond breaks, it does not sustain any force any longer

$$S_0(t,\eta,\xi) = S_{00} - \alpha S_{min}(t,\eta,\xi)$$

$$\xi = x - x'$$
 $\eta = u' - u$

Dilatation

Conclusion

- High fidelity simulation that can bridge multiple scales for molecular to micro-scales
- Low computed cost
- Easy to integrate with continuum mechanics
- The most important advantage of the peridynamic approach over other methods for fracture modelings is that it does not require any additional formulation that determines when a crack should grow, its velocity, direction, branching and relationship between length and width of the crack.
- The equation of motion deals with all of these phenomena

